Large Modulus Ring-LWE ≥ Module-LWE

نویسندگان

  • Martin R. Albrecht
  • Amit Deo
چکیده

We present a reduction from the module learning with errors problem (MLWE) in dimension d and with modulus q to the ring learning with errors problem (RLWE) with modulus q. Our reduction increases the LWE error rate α by a quadratic factor in the ring dimension n and a square root in the module rank d for power-of-two cyclotomics. Since, on the other hand, MLWE is at least as hard as RLWE, we conclude that the two problems are polynomial-time equivalent. As a corollary, we obtain that the RLWE instance described above is equivalent to solving lattice problems on module lattices. We also present a self reduction for RLWE in power-of-two cyclotomic rings that halves the dimension and squares the modulus while increasing the error rate by a similar factor as our MLWE to RLWE reduction. Our results suggest that when discussing hardness to drop the RLWE/MLWE distinction in favour of distinguishing problems by the module rank required to solve them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provably Weak Instances of Ring-LWE

The ring and polynomial learning with errors problems (Ring-LWE and Poly-LWE) have been proposed as hard problems to form the basis for cryptosystems, and various security reductions to hard lattice problems have been presented. So far these problems have been stated for general (number) rings but have only been closely examined for cyclotomic number rings. In this paper, we state and examine t...

متن کامل

Dimension-Preserving Reductions from LWE to LWR

The Learning with Rounding (LWR) problem was first introduced by Banerjee, Peikert, and Rosen (Eurocrypt 2012) as a derandomized form of the standard Learning with Errors (LWE) problem. The original motivation of LWR was as a building block for constructing efficient, low-depth pseudorandom functions on lattices. It has since been used to construct reusable computational extractors, lossy trapd...

متن کامل

Worst-case to average-case reductions for module lattices

Most lattice-based cryptographic schemes are built upon the assumed hardness of the Short Integer Solution (SIS) and Learning With Errors (LWE) problems. Their efficiencies can be drastically improved by switching the hardness assumptions to the more compact Ring-SIS and RingLWE problems. However, this change of hardness assumptions comes along with a possible security weakening: SIS and LWE ar...

متن کامل

On error distributions in ring-based LWE

Since its introduction in 2010 by Lyubashevsky, Peikert and Regev, the ring learning with errors problem (ring-LWE) has become a popular building block for cryptographic primitives, due to its great versatility and its hardness proof consisting of a (quantum) reduction from ideal lattice problems. But, for a given modulus q and degree n number field K, generating ring-LWE samples can be perceiv...

متن کامل

Hardness of decision (R)LWE for any modulus

The decision Learning With Errors problem has proven an extremely flexible foundation for devising provably secure cryptographic primitives. LWE can be expressed in terms of linear algebra over Z/qZ. This modulus q is the subject of study of the present work. When q is prime and small, or when it is exponential and composite with small factors, LWE is known to be at least as hard as standard wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017